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0.1 Monday 1 July 2019
1. QFT1 Medley 2. QFT2 Medley

QUANTUM FIELD THEORY 1.

1. Consider the classical radiation field and write the Lagrangian and the
whole set of the field equations. Show that its total angular momentum
density third rank tensor can always be cast into a purely orbital form
and comment the result. Provide some good reasons why the photon
spin is customarily set equal to 1.

2. Write the normal modes expansion of a charged scalar Klein-Gordon
quantum field. Derive the corresponding energy-momentum and charge
operators, both in terms of the operator valued tempered distribution
local field and of the creation-destruction operators.

3. Consider a Weyl spinor field. Write the classical Action - in both
the two and four component forms of the Weyl spinor field - and list
all its symmetries. Derive and solve the field equations. Find the
normal modes expansions for the corresponding quantum field, which
describes non interacting mass-less neutrino and anti-neutrino particles,
specifying the algebra of the creation-destruction operators.

QUANTUM FIELD THEORY 2.

Obtain the QED fermion effective Action, i.e. the Dirac spinor functional
determinant in the presence of a classical real vector field, in perturbation
theory. Write its explicit expression in the case of a uniform, i.e. constant
and homogeneous, background real vector field.
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0.2 Monday 3 June 2019
1. QFT1 Medley 2. QFT2 Medley

QUANTUM FIELD THEORY 1.

1. A rotation of an orthogonal left handed reference frame in the three
dimensional Euclidean space can be represented as a product of three
orthogonal matrices: the rotation matrix R 3(ϕ) about the OZ axis, the
rotation matrix R1(θ) about the OX ′ axis, which is called the nodal
line, and the rotation matrix R 3(ψ) about the OZ ′ axis, i.e.

R(g) = R(ϕ, θ, ψ) = R 3(ψ)R1(θ)R 3(ϕ)

where 0 ≤ ϕ < 2π ; 0 ≤ θ ≤ π ; 0 ≤ ψ < 2π are the Euler angles. Write
any element of the fundamental representation τ 1

2
(ϕ, θ, ψ) as a function

of the Euler angles and verify that τ 1
2
(0, θ, ψ) = − τ 1

2
(2π, θ, ψ). What

does it mean?

2. Find the Fourier transform of the adjoint spinor propagator S̄ F (y−x),
i.e. the solution of the non-homogeneous adjoint Dirac equation

iδ (x− y) = S̄ F (y − x) (
←
i∂/x +M )

which fulfills causality.

3. Consider the vector potential of the radiation field in the Feynman
gauge, which satisfies the canonical commutation relations[

Aλ(x) , Aν(y)
]

= ig λν D0(x− y)

[B(x) , Aν(y) ] = i∂ νx D0(x− y) [B(x) , B(y) ] = 0

where B(x) is the auxiliary scalar field, whereas the mass-less Pauli-
Jordan real and odd distribution reads

D0(x) = D
(−)
0 (x) +D

(+)
0 (x) = lim

m→ 0
D(x ; m)

D0(x− y) ≡ 1

i

∫
d4k

(2π) 3
δ
(
k2
)

sgn (k 0) exp{− ik · (x− y)}

Calculate the commutator
[
F ρλ(x) , B(y)

]
and comment its relation

with the auxiliary condition B (−)(x)|phys〉 = 0

Calculate the commutators [F µν(x) , F ρσ(y) ] and comment the results
for space-like separations (x− y)2 < 0
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QUANTUM FIELD THEORY 2.

1. Consider a non-Abelian gauge theory of gauge group SU(N). Show that
the field strength transforms according to the adjoint representation.
Explain why the adjoint representation of SU(N) is real.

2. Consider two different Nucleons within the context of the Yukawa
Model. Write the collision matrix up to the second order in the Yukawa
coupling y > 0. Obtain the proton-neutron scattering amplitude, up
to the same approximation, from the LSZ reduction formulas.

3. Consider the e−µ− scattering in QED, up to the lowest order in the
fine structure constant. Write the Feynman rules and derive the lowest
order scattering amplitude for the above process. For energies of the
colliding particles much smaller of electron rest energy, show that the
interaction is described by the repulsive Coulomb potential.
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Solution.

QUANTUM FIELD THEORY 1.

1. SU(2) provides a fundamental two dimensional representation of the
abstract rotation group, the Hermitean generators of which being given by
1
2
σa (a = 1, 2, 3), so that the element corresponding to R 3(ϕ) is evidently

τ 1
2
(ϕ) = exp{(i/2)σ3 ϕ} = I cos 1

2
ϕ+ iσ3 sin 1

2
ϕ =

 e iϕ/2 0
0 e− iϕ/2


Quite analogously, the SU(2) element corresponding to a rotation around
the nodal line can be written as

τ 1
2
(θ) = exp{(i/2)σ1 θ} = I cos 1

2
θ + iσ1 sin 1

2
θ =

 cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)


Thus we eventually obtain

τ 1
2
(ϕ, θ, ψ) = g3(ψ)g1(θ)g3(ϕ)

=

 e i(ϕ+ψ)/2 cos θ/2 ie i(ψ−ϕ)/2 sin θ/2
ie i(ϕ−ψ)/2 sin θ/2 e− i(ϕ+ψ)/2 cos θ/2


in such a manner that, for instance,

τ 1
2
(0, θ, ψ) = − τ 1

2
(2π, θ, ψ)

Hence, the representation τ 1
2
(ϕ, θ, ψ) is a unitary, irreducible, continuous

albeit double-valued representation of the rotation group. This entails that
the proper rotation group SO(3) is not simply connected.

2. The Fourier representation of the Feynman propagator for the Dirac
spinor quantum field reads

S F (x− y) = (i∂/x +M)DF (x− y)

=
i

(2π)4

∫
d4p

p/+M

p2 −M2 + iε
exp{− ip · (x− y)}

=
1

(2π)4

∫
d4p

 i

p/−M

 exp{− ip · (x− y)}

where
i( p/+M )αβ
p2 −M2 + iε

=

 i

p/−M


αβ
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The spinor propagator fulfills the non-homogeneous matrix-type differential
equation

(i∂/x −M)αβ S
F
βγ(x− y) = iδ(x− y) δγα

Then it is easy to write the adjoint form of the non-homogeneous equation
for the Feynman propagator of the spinor field. To this concern, let us first
obtain the Hermitean conjugate of previous equation viz.,

iδ(x− y) = i(∂/∂xµ)S †F (x− y) γ µ † +M S †F (x− y)

= i(∂/∂xµ)S †F (x− y) γ0 γ µ γ0 +M S †F (x− y)

Multiplication by γ0 from left and right yields

iδ(x− y) = iγ0 (∂/∂xµ)S †F (x− y) γ0 γ µ + γ0M S †F (x− y) γ0

def
= S̄ F ( y − x) (

←
i∂/x +M )

where

S̄ F ( y − x) = γ 0 S †F (x− y) γ 0

=
− i

(2π)4

∫
d4p

p/+M

p2 −M2 − iε
exp{− ip · (y − x)}

is the adjoint Feynman propagator for the Dirac field.

3. We find[
F ρλ(x) , B(y)

]
=

[
∂ ρxA

λ(x)− ∂ λx Aρ(x) , B(y)
]

= ∂ ρx
[
Aλ(x) , B(y)

]
− ∂ λx [Aρ(x) , B(y) ]

= ∂ ρx(− i)∂ λyD0( y − x) + i ∂ λx ∂
ρ
yD0( y − x)

= − i
(
∂ ρx ∂

λ
x − ∂ λx ∂ ρx

)
D0(x− y) = 0

that also implies
[
F ρ λ (x) , B(−)(y)

]
= 0, so that the gauge invariant field

strength Hermitean operators Fµν(x) = F †µν(x) appear to correspond to local
observable operators in the covariant quantum field theory for the radiation
field. Moreover we get

[F µν(x) , F ρσ(y) ] =
[
∂ µx A

ν(x)− ∂ νxAµ(x) , ∂ ρy A
σ(y)− ∂ σy Aρ(y)

]
= ∂ µx ∂

ρ
y [Aν(x) , Aσ(y) ]− ∂ µx ∂ σy [Aν(x) , Aρ(y) ]

− ∂ νx ∂
ρ
y [Aµ(x) , Aσ(y) ] + ∂ νx ∂

σ
y [Aµ(x) , Aρ(y) ]

=
(
∂ µx ∂

ρ
y g

νσ − ∂ µx ∂ σy g νρ − ∂ νx ∂ ρy g µσ + ∂ νx ∂
σ
y g

µρ
)

× iD0(x− y)
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Thus we obtain[
F ı 0(x) , F  0(y)

]
= i∂20 δ ıD0(x− y)− i∂ı ∂D0(x− y)

= (4 δ ı − ∂ı∂ ) iD0(x− y)

⇒ [E ı(x) , E (y) ] = 0 ∀ (x− y)2 < 0[
F ı 0(x) , F  k(y)

]
=

(
∇ δ

ı
k −∇k δ

ı


) i∂

∂x0
4(x− y)[

E ı(x) , B `(y)
]

= 1
2
ε  k ` [F ı 0(x) , F  k(y) ]

= 1
2
iε  k ` (∇ δ ık −∇k δ ı )

∂

∂x0
4(x− y)

and from the equal time limit

lim
x0→ y0

∂

∂x0
D0(x− y) = δ(x− y)

we obtain

[E ı(x) , B ı(y) ] = 0 ∀ (x− y)2 < 0 ( ı = 1, 2, 3 )

lim
x0→ y0

[E ı(x) , B (y) ] = iε ık∇k δ(x− y)

which shows that the electric and magnetic parts of the radiation field do
not generally commute even at space-like separations. Finally we clearly get

[B ı(x) , B (y) ] = 0 ∀ (x− y)2 < 0

QUANTUM FIELD THEORY 2.

1. The so called non-Abelian field strength is an anti-symmetric matrix
valued tensor Fµν(x) = −Fνµ(x) defined by

Fµν(x) = F a
µν(x) τ a

F ≡
i

g
[Dµ , Dν ]

=
i

g

[
∂µ − ig Aaµ(x) τ a

F , ∂ν − ig Abν(x) τ b
F

]
= [ ∂µA

a
ν(x)− ∂ν Aaµ(x) ]τ a

F − ig Aaµ(x)Abν(x)
[
τ a
F , τ

b
F

]
= τ a

F

(
∂µA

a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x)

)
= ∂µAν(x)− ∂νAµ(x)− ig [Aµ(x) , Aν(x) ]

and which evidently transforms in a homogeneous way

F ′µν(x) =
i

g

[
D ′µ , D

′
ν

]
= Uω(x)Fµν(x)U †ω (x)
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This means that the field strengths tensor transforms according to the adjoint
representation of the gauge group. In fact we find

F ′µν(x) = exp{ ig ω a(x)τ a
F}Fµν(x) exp{− ig ω a(x)τ a

F}
= Fµν(x) + ig ω a(x) [ τ a

F , Fµν(x) ] +O(ω2)

=
(
F c
µν(x)− gfabc ω a(x)F b

µν(x) + O(ω2)
)
τ c
F

that yields, after reshuffling of the group indexes,

δ F a
µν(x) = g‖ Ia ‖bc F c

µν(x)ω b(x)

where the well known property of the anti-Hermitean infinitesimal operators
in the N2 − 1 dimensional adjoint representation is employed, viz.

‖ Ia ‖bc ≡ facb ( a, b, c = 1, 2, . . . , N2 − 1 )

with Ia + I †a = 0 . Since the structure constants are real numbers for any Lie
group, it turns out that the adjoint representation is always real. Hence, if
we introduce the anti-symmetric tensor field strengths components

{F a
µν(x) | a = 1, 2, . . . , N2 − 1}

we can write its finite transformation law by raising the infinitesimal one to
the exponential form, viz.,(

F a
µν(x)

) ′
= ‖ exp{− gIc ω c(x)} ‖ab F b

µν(x)

=
(
δab + gf cab ω c(x) + · · ·

)
F b
µν(x)

= F a
µν(x) + gfabc F b

µν(x)ω c(x) +O(ω2)

It is convenient to define the adjoint covariant derivative, i.e. the covariant
derivative in the adjoint representation: namely,

∇µ = ∂µ + gAcµ Ic ∇ ab
µ ≡ ∂µ δ

ab − gfabcAcµ(x)

Then we obtain

1

g
[∇µ , ∇ν ] = ∂µA

c
ν(x) Ic − ∂ν Acµ(x) Ic + g Aaµ(x)Abν(x) [ Ia , Ib ]

=
(
∂µA

c
ν(x)− ∂ν Acµ(x) + gfabcAaµ(x)Abν(x)

)
Ic

=
(
∂µA

a
ν(x)−∇ ab

ν Abµ(x)
)
Ia = F a

µν(x) Ia
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that keeps the same form as in the fundamental representation. If we rewrite
the above commutator by exhibiting the group indexes we evidently obtain[

∇ ab
µ , ∇ bc

ν

]
= g F d

µν(x) ‖ Id ‖ac = g f acd F d
µν(x)

It is also very useful to collect the infinitesimal form of the non-Abelian
gauge transformations that reads, up to the first order in the small parameter
functions δωa(x)

δψ(x) = ig δω a(x) τ a
F ψ(x)

δAµ(x) = ∇µ δω(x) = τ a
F δA

a
µ(x) = τ a

F ∇ ab
µ δω

b(x)
δFµν(x) = gfabc F b

µν(x) δω c(x) τ a
F{

δAaµ(x) = ∂µδω
a(x)− gfabc δω b(x)Acµ(x)

δF a
µν(x) = − gfabc δω b(x)F c

µν(x)

2. According to the phenomenological Heisenberg IsoSpin Model, the two
kinds of Nucleons can be supposed to be point-like and arranged into a
doublet of Dirac fields

Ψ(x) =

 p(x)
n(x)


transforming according to one of the fundamental representations of SU(2)
that is called the Isotopic Spin or Isospin internal symmetry group, according
to the original Heisenberg title to indicate this new quantum number. The
point-like Nucleons are supposed to interact through the Yukava force carried
by a spin-less Isoscalar real meson field π0(x), so that the classical Lagrangian
of the present Heisenberg-Yukawa model model for nuclear matter reads

L = Ψ†(x)γ0(i∂/ −M) Ψ(x) + 1
2
∂µπ

0(x)∂ µπ0(x)− 1
2
m2[ π0(x) ]2

− y π0(x)Ψ†(x)γ0Ψ(x) ( y ∈ R )

The Lagrangian is invariant under the full Lorentz group, under the charge
conjugation symmetry, the SU(2) isospin transformations on the spinor fields

Ψ(x) 7−→ Ψ ′(x) = exp
{

1
2
iσa θa

}
Ψ(x) ( a = 1, 2, 3 )

and the overall phase transformation on the SU(2) spinor doublet

Ψ(x) 7−→ Ψ ′(x) = e iϕ Ψ(x)

where σa are the Pauli matrices while

0 ≤ θ < 2π 0 ≤ ϕ < 2π θ =
√
θ21 + θ22 + θ23

9



are the canonical coordinates of the internal symmetry group SU(2)×U(1).
The invariance under the Abelian group of the phase transformations leads
to conservation of the barion number B. Thus, if we measure the charge Q
in units of the proton charge e, then we can write the relation Q = T3 + 1

2
B

where

T3 =

∫
dx Ψ †(t,x) 1

2
σ3Ψ(t,x)

= 1
2

∫
dx [ p†(t,x) p(t,x)− n†(t,x)n(t,x) ]

B =

∫
dx [ p†(t,x) p(t,x) + n†(t,x)n(t,x) ]

Q

e
=

∫
dx p†(t,x) p(t,x)

The momentum space Feynman rules are the very same for both kinds of
Nucleons as well as the Feynman rules for the incoming and outgoing particles
and antiparticles: namely,

• scalar propagator: DF (k) = i[ k2 −m2 + iε ]−1

• spinor propagator: SFαβ(p) = i(p/+M)αβ (p2 −M2 + iε)
−1

• meson-Nucleon-Nucleon vertex: − iy ( p1 + k − p2 = 0 )

• for each loop of internal line labeled by ` :
∫

d4`/(2π)4

• a factor (− 1) for each fermion loop

• incoming Nucleon: u r(p1) , us(p2)

• outgoing Nucleon: ū r ′(p ′1) , us ′(p ′2)

• incoming anti-nucleon: v̄ r(p1) , vs(p2)

• outgoing anti-nucleon: v r ′(p ′1) , vs ′(p ′2)

Let us now consider, for the sake of pedagogical simplicity, the pn collision
for incident Nucleons momenta much below Mc , i.e. in the non-relativistic
approximation. In such a circumstance, by comparing the amplitude for this
process – up to the lowest order in the Yukawa coupling y – to the scattering
amplitude of non-relativistic quantum mechanics in the Born approximation,
we can extract the potential V (r) created by the Yukawa field theory model.

As the two colliding Nucleons are distinguishable, only the diagram of
Fig.1 does contribute to the lowest order y 2 . Actually we understand the
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Figure 1: The lowest order diagram corresponding to Nucleon scattering in
the Yukawa theory
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incoming particles as free spinor particles of given energy momentum and
polarization (p, r) and (q, s) , while the outgoing free particles will carry the
energy momentum and polarization labels (p ′, r ′) and (q ′, s ′) respectively.
Hence, the application of the S−matrix basic formula to the Yukawa model
with two kinds of spinor fields yields

S = I− iy
∫

dx π0
int(x)[ pint(x) pint(x) + nint(x)nint(x) ]

− y2
∫

dx
∫

dx′ T π 0
int(x) pint(x) pint(x)π 0

int(x
′)nint(x

′)nint(x
′)

+ · · · · · ·

and the further application of the Wick’s theorem to this scattering operator
matrix element gives rise to only a single non-vanishing term, viz.,

(−iy)2 〈 0 | c r ′( p ′ )C s ′( q ′ ) : n̄
(+)
x′ n

(−)
x′ p (+)

x p (−)
x : C †s( q) c †r( p) | 0 〉Dxx′

= (−1)(−iy)2 〈 0 | c r ′( p ′ )C s ′( q ′ ) n̄
(+)
x′ n

(−)
x′ c †r( p)︸ ︷︷ ︸ p (+)

x p (−)
x C †s( q)︸ ︷︷ ︸ | 0 〉Dxx′

= (+1) (−iy)2 c r ′( p ′ ) n̄ x′︸ ︷︷ ︸ n x′ c †r( p)︸ ︷︷ ︸ Dxx′ C s ′( q ′ ) p x︸ ︷︷ ︸ p x C †s( q)︸ ︷︷ ︸
⇒ ū r ′( p ′ )u r( p)

− iy2

( p ′ − p)2 −m2
u s ′(q ′ )u s( q) ( p+ q = p ′ + q ′ )

where we have indicated with small and capital letters the creation and
destruction operators of the neutron and proton particles respectively. Here
the Dirac bispinor indexes have been always understood, to avoid too heavy
notations while, of course, we have

r, s, r ′, s ′ = 1, 2 , p 2 = q 2 = p ′ 2 = q ′ 2 = M 2

Notice that we have employed the same form of the spin states for both
Nucleons, which is true in the equal masses approximation.

3. The perturbative expansion of the collision matrix in QED with two kinds
of spinor field carrying equal electric charges though different masses reads

S = I + ie

∫
dy Aµint(y)ψ int(y)γµψ int(y)

+ ie

∫
dxAνint(x)Ψ int(x)γνΨ int(x)

− e2
∫

dx

∫
dy TAµint(x)ψ int(x)γµψ int(x)Aνint(y)Ψ int(y)γνΨ int(y)

+ · · · · · ·

To the first order in e/
√

2hc some processes might occur in perturbation
theory, in which three physical particles – one photon and two Dirac particles
– would appear in the initial and final states on the mass shells. It can be
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readily seen, however, that those kinds of processes are impossible, owing to
energy momentum conservation. If we denote by kµ the photon momentum
and by pν , qρ the Dirac particles momenta respectively, then the energy-
momentum conservation is expressed by the equality k = p± q, the sign plus
being related to a particle-antiparticle pair, the minus sign being instead
referred to a 2-particles or a 2-antiparticles pair. The above equality is in
fact impossible because k2 = 0 while for e.g. q = 0 we get

( p± q )2 = 2(M2 ± p · q) = 2(M2 ± p0q0 ∓ p · q) = 2M(M ± p0)

and since p0 > M we find either ( p + q )2 > 0 or ( p − q )2 < 0. Hence, the
first nontrivial term in the collision matrix becomes

S = − e2
∫

dx

∫
dy
(
T Aµint(x)Aνint(y)

)
×

(
T ψ int(x)γµψ int(x)Ψ int(y)γνΨ int(y)

)
+ · · · · · ·

owing to the commutation between photon and Dirac field operators. Thus,
for e−µ− elastic scattering, the Wick’s theorem yields, up to the leading order
and in natural units,

− e2 〈 0 | c s( q)C s ′( q ′ ) : ψ̄ (+)
x γµ ψ

(−)
x D µν

xy Ψ
(+)

y γν Ψ (−)
y : C †r ′( p

′ ) c †r( p) | 0 〉

= − e2 〈 0 | c s( q) ψ̄ (+)
x γµ ψ

(−)
x C s ′( q ′ ) Ψ

(+)

y︸ ︷︷ ︸ γν Ψ (−)
y C †r ′( p

′ )︸ ︷︷ ︸ c †r( p) | 0 〉D µν
xy

= − e2 〈 0 | c s( q) ψ̄ (+)
x︸ ︷︷ ︸ γµ ψ (−)

x c †r( p)︸ ︷︷ ︸ D µν
xy C s ′( q ′ ) Ψ

(+)

y︸ ︷︷ ︸ γν Ψ (−)
y C †r ′( p

′ )︸ ︷︷ ︸ | 0 〉
⇒ − e2 ū s( q) γ µ u r( p)

− i
( p− p ′ )2

U s ′( q ′ ) γµ U r ′( p ′ ) ( p+ p ′ = q + q ′ )

where, of course, we have

r, s, r ′, s ′ = 1, 2 , p 2 = q 2 = p ′ 2 = q ′ 2 = M 2

Putting all pieces together we find from the Feynman graph the dimensionless
transition amplitude

ū s( q) ie γ
µ u r( p)

− i
( p− q)2

U s ′( q ′ ) ie γµ U r ′ (p ′ )

Notice that the Feynman gauge photon propagator, which represents the
electromagnetic interaction in the present lowest order amplitude, can be
suitably rewritten in the very suggestive form

Dµν(k) =
gµν
it
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where t is the Mandelstam variable which corresponds to the invariant norm
of the transferred 4-momentum k = p− q = q ′ − p ′, viz.,

t ≡ ~2k2 = ~2( p− q)2 = 2M2c 2

[
1−

√
1 +

~2q2

M2c 2

]
< 0

Here the rest frame of the incoming particle p = (Mc, 0, 0, 0) has been used,
without loss of generality thanks to the Lorentz invariance, to exhibit the
space-like nature of the transferred momentum t. This means in turn that the
exchanged photon, which mediates the electromagnetic interaction between
the two charged Dirac spinor particles, is virtual and space-like, i.e. off its mass
shell k2 = 0 , and that all the four kinds of polarization, physical and non-
physical, do indeed carry the Coulomb interaction in the manifestly covariant
Feynman gauge. In the non-relativistic limit we can approximate as follows:

~ p ≈ (Mc, ~p ) ~ q ≈ (Mc, ~q )

~ p ′ ≈ (Mc, ~p ′ ) ~ q ′ ≈ (Mc, ~q ′ )

( p− p ′ )2 ≈ − |p− p ′ | 2

u1(p) ≈
√
Mc

~


1
0
1
0

 u 2(p) ≈
√
Mc

~


0
1
0
1


so that

u †s( q)u r( p) ≈ 2
Mc

~
δ rs u †s ′(q

′ )u r ′(q ′ ) ≈ 2
Mc

~
δ r ′s ′

ūs(q) γ
k ur(p) = u †s( q)α

k u r( p) ≈ 0

ūs ′(q ′) γk ur ′(p ′) = u †s ′( q
′ )α k u r ′( p ′ ) ≈ 0

for r, r ′, s, s ′ = 1, 2 , in such a manner that the particle spin is conserved in
the non-relativistic regime. Then we eventually come to the non-relativistic
approximation

− ie 2c 2

~ 2|p− q | 2
2M δ r s 2M δ r ′ s ′ = 4πi Tp ,q 2

Mc

~
δ r s δ r ′ s ′

and consequently

Tp ,q = f(θ) = − 2αMc

~ |p− q | 2
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which corresponds to the repulsive Coulomb potential

V (r) =
e 2

4π r
=
α

r
Ṽ ( |p− q | ) =

e2

|p− q | 2

so that(
dσ

dΩ

)
=

M2α2c 2

4}2 |p | 4 sin 4( θ/2 )
=

α 2~2c 2

16E 2 sin 4( θ/2 )
( }2p2 = 2ME )

which is nothing but the celebrated Rutherford exact cross-section. For an
antiparticle-particle scattering we have to make the replacement

ū s( q) ie γ
µ u r( p) ↔ v̄ r( p) (− ie γ µ ) v s( q)

and owing to
v̄ s( q) γ

0 v r( p) ≈ 2M δ r s et cetera

the sign of the non-relativistic Coulomb potential is opposite as it does. As
a final remark we discuss about gauge invariance. One is always free to
replace the photon propagator in the Feynman gauge with the the most
general expression in a Lorentz invariant non-homogeneous Lorenz gauge
∂µA

µ(x) = ξB(x) that yields

D̃ c
λµ(k ; ξ) =

i~c
k2 + iε

(
− gλµ +

1− ξ
k2 + iε

kλ kµ

)
with k = p− p ′ = q ′ − q . Now, if we recall the Dirac equations for the spin
states, viz.,

(p/−M)u r(p) = 0 = ū r ′(p ′ )(p/ ′ −M)

(q/−M)u s(q) = 0 = ū s ′(q ′ )(q/ ′ −M)

then we obtain the matrix general element

ū s( q) ie γ
µ u r( p)

− i
( p− q)2

ū s ′( q ′ ) ieγ ν u r ′( p ′ )

×
[
gµν −

1− ξ
(p− q)2 + iε

(p− q)µ ( q ′ − p ′ )ν
]

= ū s( q) γ
µ u r( p)

ie2

( p− q)2
ū s ′( q ′ ) γµ u r ′( p ′ )

which endorses gauge invariance, i.e. ξ−independence, of the lowest order
scattering amplitude. However, it turns out that this fundamental feature
holds true to any order, what corresponds to the so called Ward’s identity.
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0.3 Wednesday 17 April 2019
1. Basic QFT Medley

FIELD THEORY 1.

Basic Quantum Field Theory Medley

1. Write in explicit form the generic element of SL(2,C) as a function of
the canonical coordinates (α,η) of the proper Lorentz group.

2. Show that for a classical Action which is invariant under space-time
translations the canonical energy-momentum tensor does satisfy the
continuity equation ∂µ T

µ
ν(x) = 0.

3. Consider a Klein-Gordon scalar quantum field φ(t,x). Write its normal
modes expansion. Verify that for ωk = c

√
k2 +m2c 2/~2

cP0 = H =

∫
dx : T00(t,x) : =

∫
dk ~ωk a

†
kak

4. Show that the bi-linear expression ψ(x)γ5ψ(x) is a pseudo-scalar, where
ψ(x) is a classical four components Dirac spinor field, while the further
expression ψ(x)γ µγ5ψ(x) is a pseudo-vector.

5. Write the normal modes expansion of the quantum radiation field in
the Feynman gauge and list the canonical commutation relations among
the creation-destruction operators.
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0.4 Thursday 19 February 2019
1. Field Theory Medley 2. π0N Elastic Collision

FIELD THEORY 1.

1. Poincaré Invariance of the Klein-Gordon Quantum Field. The
operator valued tempered distribution which describe a Klein-Gordon
quantum scalar field is provided by the normal modes expansion

φ(x) =

∫
Dk

[
a(k) e−ik·x + a†(k) e ik·x

]
k0 =ωk

where
∫

Dk ≡
∫

dk/(2π)3 2ωk while the creation-destruction operator
satisfy the canonical commutation relations

[ a(k) , a(k ′) ] = 0 [ a(k) , a†(k ′) ] = (2π)3 2k0 δ(k−k ′) ( k0 = ωk )

(i) Write the unitary operator of the Poincaré transformations on the
Fock space of states of a quantum Klein-Gordon field.

(ii) Evaluate its action upon the creation-destruction operators.

(iii) Verify that the Poincaré transformations look the same for classical
and quantum fields.

2. Charge conjugation of a Dirac field is defined to be ψ c(x) = γ2 ψ ∗(x) .
Obtain the charge conjugation for the following expressions

ψi∂/ψ, ψψ, ψγ5ψ, ψγ
µψ, ψγ µγ5ψ

3. Consider the quantum radiation field in the absence of charged matter.
Write the quantum counterpart of the Maxwell equations. Evaluate
the commutator [ B(x),B(y) ] where B = ∇×A .
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FIELD THEORY 2.

The two kinds of Nucleons can be arranged into a doublet of Dirac fields

Ψ(x) =

 p(x)
n(x)


transforming according to one of the fundamental representations of SU(2)
that is called the Isospin internal symmetry group. The Nucleons interact
through the Yukava force carried by a spin-less Iso-scalar field π(x), the
1-particle states of which are the neutral π0 mesons, so that the classical
Lagrangian reads

L = Ψ(x) (i∂/ −M) Ψ(x) + 1
2
∂µπ(x)∂ µπ(x)− 1

2
m2π2(x)− gπ(x)Ψ(x) Ψ(x)

where g > 0 is the Yukawa coupling while we safely assume1 mp ≈ mn ≈M .

1. Find all the symmetries of the Action

2. Write the Feynman rules in momentum space

3. Find the lowest order non-polarized differential cross section for the
π0N elastic scattering. Suppose the Nucleon at rest before the collision
and the π0 momenta, before and after the collision, large enough to
disregard the meson rest mass.

1Experimentally one finds (mn−mp)/(mn+mp) ' 0.7×10−3, while mπ0/m p ' 0.14 .
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Solution.

FIELD THEORY 1.

1. It turns out that to each element of the restricted Poincaré group, which
is uniquely specified by the ten canonical coordinates(

ω µν , aλ
)

=
(
α,η, aλ

)
= (ω, a)

with |α | < 2π , η ∈ R3 , aλ ∈ R4 , there will correspond a unitary operator
such that

U(ω, a) | 0 〉 = exp

{
i

}
aµPµ −

i

2}
ω ρσLρσ

}
| 0 〉 = | 0 〉

〈 0 |U †(ω, a) = 〈 0 | exp

{
− i

}
aµPµ +

i

2}
ω ρσLρσ

}
= 〈 0 |

which means that the vacuum state is Poincaré invariant or, in other words,
that IO(1, 3) acts trivially on the one dimensional ray of the Fock space
generated by the vacuum state for a Klein-Gordon scalar quantum field. In
the case of the Klein-Gordon neutral field, the explicit form for the Hermitean
generators is provided by the normal ordered expressions

P0 =

∫
dx 1

2
: Π 2 (x) +∇φ(x) · ∇φ(x) +m2φ 2(x) : =

∑
k

ωk a
†
k ak

Pk =

∫
dx : Π(x) ∂kφ(x) : =

∑
k

k a†k ak

L ı =

∫
dx : xı Π(x) ∂φ(x)− x Π(x) ∂ıφ(x) :

=
∑
k

i

2

 k ı a
†
k

↔
∂

∂k 
ak − k  a

†
k

↔
∂

∂k ı
ak


L 0k = x0 Pk −mXk(t) =

i

2

∑
p

ωp a
†
p

↔
∂

∂ p k
ap

Xk(t) =
1

2m

∫
dx x k : Π 2(x) +∇φ(x) · ∇φ(x) +m2φ 2 (x) :

Moreover, it can be actually verified that the creation-destruction operators
undergo the following changes under a Poincaré transformation: namely,

a ′(k) ≡ U(ω, a) a(k)U −1(ω, a) = a(k ′) exp{− i k · a}
k ′µ = Λ ν

µ kν k0 = ωk g µν k ′µk
′
ν = k ′ 2 = k2 = m2

a ′ †(k) ≡ U(ω, a) a†(k)U −1(ω, a) = exp{ i k · a} a†(k ′)
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which endorses the Poincaré invariance, up to a phase factor, of the creation
and annihilation operators of the Klein-Gordon quantum scalar field.

As a matter of fact, consider an infinitesimal Poincaré transformation

U(δω, δa) a(k)U †(δω, δa) ' a(k) + i
[
δaµ Pµ − 1

2 δω
ρσLρσ , a(k)

]
From the canonical commutation relations it is straightforward to show that

[ a(k) , Pµ ] = [ (u k , φ ) , Pµ ] = i (u k , ∂µ φ )

=

∫
Dp pµ

[
a(p) (u k , u p)− a †(p)

(
u k , u

∗
p

) ]
= kµ a(k)

Moreover we have

[ a(k) , Lµν ] = [ (u k , φ ) , Lµν ] =

∫
dx u ∗k(t,x) i

↔
∂0[φ(t,x) , Lµν ]

= −
∫

dx u ∗k(t,x)
↔
∂0

(
xµ ∂ ν φ(t,x)− xν ∂µφ(t,x)

)
=

∫
Dp pν

[
a†(p)

i∂

∂ pµ
(
u k , u

∗
p

)
+ a(p)

i∂

∂ pµ
(u k , u p)

]
− µ ↔ ν

= −
∫

Dp pν

[
a †(p)

i∂

∂ k µ
(
u k , u

∗
p

)
+ a(p)

i∂

∂ k µ
(u k , u p)

]
− µ ↔ ν

= − i∂

∂ k µ

∫
Dp pν a(p) (u k , u p)− µ ↔ ν

= − i∂

∂ k µ
(kν a(k))− µ ↔ ν = i kµ

∂

∂ k ν
a(k)− i kν

∂

∂ k µ
a(k)

where use has been made of the inversion formulæ. Hence, under an infinitesimal Poincaré
transformation we get

U(δω, δa) a(k)U −1(δω, δa) ' a(k)− i
[
a(k) , δaµ Pµ − 1

2 δω
ρσLρσ

]
=

{
1− i δa · k − 1

2 δω
µν

(
kµ

∂

∂ k ν
− kν

∂

∂ k µ

)}
a(k)

so that we eventually find

a ′(k)− a(k) ' δa(k) '
{

1
2 ε

µν

(
kν

∂

∂ k µ
− kµ

∂

∂ k ν

)
− i kµ εµ

}
a(k)

where we have identified as customary δaµ ≡ εµ , δω µν ≡ εµν . Moreover, the action of
an infinitesimal Lorentz transformation on the wave tetra-vector yields

a(Λ k)− a(k) ' a(k + δk)− a(k) = δk µ
∂

∂ k µ
a(k) = εµν kν

∂

∂ kµ
a(k)

in such a manner that we can finally get the finite transformation rule

U(ω, a) a(k)U −1(ω, a) = exp{− i k · a} a(Λ k)

' (1− i kµ aµ + · · ·)
(

1− ω µν kν
∂

∂ k µ
+ · · ·

)
a(k)

=

{
1− i kµ aµ a(k) + 1

2 ω
µν

(
kν

∂

∂ k µ
− kµ

∂

∂ k ν

)}
a(k) + · · ·
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and consequently

a ′(k) ≡ U(ω, a) a(k)U †(ω, a) = a(Λ k) exp{− i k · a} k0 = ωk

as claimed. It is worthwhile to notice that by repeating the very same steps
for the inverse Poincaré unitary similarity transformation we obtain

a ′(k) ≡ U −1(ω, a) a(k)U(ω, a) = a(Λ−1k) exp{ i k · a} ( k0 = ωk )

with
U −1(ω, a) = U(−ω,− a) = U †(ω, a)

which implies in turn

a ′(k ′ ) ≡ U †(ω, a) a(Λ k)U(ω, a)

= a(k) exp{ i k · a} ( k0 = ωk )

showing that for any homogeneous Lorentz transformation the creation and
annihilation operators are invariant. From the transformation law of the
creation-destruction operators we immediately obtain the following identity
between operator valued tempered distributions, which looks the very same
as that one for the classical scalar field, viz.,

φ ′(x ′) ≡ U −1(ω, a)φ(x ′)U(ω, a)

=

∫
Dk ′

[
a ′(k ′) exp {−i k ′ · x ′}+ h. c.

]
k ′
0 =ωk ′

=

∫
D(Λk)

[
e ik·a a(k) e− ik·(x+a) + h. c.

]
k0 =ωk

= φ(x)

Concerning the discrete symmetry transforms, parity and time reversal, we
find instead

φ ′(x ′) = Pφ(x ′)P −1 = Pφ(t,−x)P †

=

∫
dk a−k uk(t,−x) + H.c.

=

∫
dk a−k [ (2π)3 2ωk ]−

1
2 exp{− itωk − ik · x } + H.c.

=

∫
dk ak [ (2π)3 2ωk ]−

1
2 exp{− itωk + ik · x } + H.c.

= φ(x)

with P = P −1 = P † (P 2 = I ) unitary and self-adjoint operator on the Fock
space, while

φ ′(x ′) = T φ(x ′) T −1 = T φ(− t,x) T †
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=

∫
dk a−k u

∗
k(− t,x) + H.c.

=

∫
dk a−k [ (2π)3 2ωk ]−

1
2 exp{− itωk − ik · x } + H.c.

=

∫
dk ak [ (2π)3 2ωk ]−

1
2 exp{− itωk + ik · x } + H.c.

= φ(x)

where use has been made of the anti-linear and anti-unitary property of the
time reversal operator ∀α, β ∈ C ∨ |u 〉 , | υ 〉 ∈ F

T (α |u 〉+ β | υ 〉) = α ∗ T |u 〉+ β ∗ T | υ 〉

〈u | T T † | υ 〉 = 〈 υ |u 〉

and of the definitive transformation rules

T P T −1 = −P T Lµν T −1 = −Lµν

T ak T −1 = a−k [ T , P0 ] = 0

2. To be definite, consider Graßmann valued Dirac spinor fields, which obey
the complex conjugation rule (ψ1ψ2 )∗ = ψ∗2ψ

∗
1 = −ψ∗1ψ∗2 . Thus, in the chiral

representation of the Clifford algebra - with γ 0 and γ5 real matrices - we
obtain

ψ c i∂/ ψ c = ψ>γ 0γ 2 γ µ γ 2 i∂µψ
∗ = ψ>γ 0 γ 2 ∗ i∂µψ

∗

=
(
ψ i∂/ψ

)∗
= ψ i∂/ψ

ψ c ψ c = −ψ>γ 2 γ 0 γ 2 ψ ∗ = −ψ>γ 0 ψ ∗ = (ψ ψ )∗ = ψ ψ

ψ c γ5 ψ
c = −ψ>γ 2 γ 0 γ5 γ

2 ψ ∗

= ψ>γ 0 γ5 ψ
∗ = −(ψ γ5 ψ )∗ = −ψ γ5 ψ

ψ c γ µ ψ c = ψ>γ 0γ 2 γ µ γ 2 ψ ∗ = ψ>γ 0 γ 2 ∗ ψ ∗

= −
(
ψ γ µ ψ

)∗
= −ψ γ µ ψ

ψ c γ µ γ5 ψ
c = −ψ>γ 0γ 2 γ µ γ 2 γ5 ψ

∗ = −ψ>γ 0 γ 2 ∗ γ5 ψ
∗

=
(
ψ γ µ γ5 ψ

)∗
= ψ γ µ γ5 ψ

3. In order to solve Maxwell equations in terms of the gauge potential it
is necessary to introduce the so called subsidiary or auxiliary condition. If
Lorentz covariance has to be manifestly maintained, then it is convenient to
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select the simplest choice: namely, the so called Feynman gauge. Hence we
start from the classical Lagrangian for the radiation field

L = − 1
4
Fµν F

µν + 1
2
B 2 + Aµ∂µB

where

F0k = E k = − ∂0Ak − ∇kA
0 Frs = εsrk B

k ε123 = 1

while B(x) is the auxiliary scalar field, so that the Euler-Lagrange equations
read

∂ µFµν + ∂νB = 0

∂ · A = B

and can be recast in the simplest form

�Aµ(x) = 0 ∂ · A(x) = B(x)

that imply in turn �B(x) = 0 . Now, in the classical case the field equations
can be further simplified, without loss of generality, by setting B(x) ≡ 0,
that actually corresponds to the Lorenz condition. In so doing we obtain the
most general solution in the form of a normal modes expansion

Aµ(x) =

∫
Dk

∑
A=1,2,L

gA(k) εµA(k) e−i k·x + c.c. ( k0 = k = |k | )

with Dk = dk/(2π)32k and gA(k) arbitrary complex coefficients. The three
linear and real polarization vectors are defined to be

εµA(k) =

{
(0, εA(k) εA(k) · k = 0 for A = 1, 2
( 1,k/k ) k20 = k2 for A = L

in such a manner that the Lorenz condition holds always true and B = 0.
Notice that in such a circumstance we recover the second pair of the Maxwell
equations ∂ µFµν = 0 for the radiation field. In the quantum case it is utmost
convenient to keep the Feynman gauge, which endorses locality of the gauge
potential operator, so that we find

Aµ(x) =

∫
Dk

∑
A=1,2,L,S

gA(k) εµA(k) e− i k·x + H.c. ( k0 = k )

where the scalar polarization vector εµS = 1
2
( 1,−k/k ) has been employed so

that

i∂ · A(x) = iB(x) =

∫
Dk k gS(k) e− i k·x − H.c. ( k0 = k )
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In the quantum case the complex coefficients of the classical normal modes
expansion will turn into creation and destruction operators which fulfill the
canonical commutation relations

[ gA(k) , gA ′(k ′) ] = 0 [ gA(k) , g †A ′(k
′) ] = (2π)32k δ(k− k ′) ηAA ′

with

ηAB =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

 (A,B = 1, 2, L, S )

The second pair of the Maxwell equations is recovered only in the physical
subspace Hphys ⊂ F of the Fock space, which is selected by the auxiliary
condition

B (−)(x)|phys〉 = 0 ⇐⇒ gS(k)|phys〉 = 0 ∀k ∈ R3

that yields

〈phys| ∂ µFµν + ∂νB |phys ′〉 = 〈phys| ∂ µFµν |phys ′〉 = 0

From the canonical commutation relations for the gauge potential in the
Feynman gauge, viz.,

[Aµ(x) , Aν(0) ] = i} g µν D0(x)

where D0(x) = limm→0D(x;m) is the mass-less Pauli-Jordan distribution,
we readily obtain the gauge and translation invariant commutation relations

[Fµν(x) , Fρσ(0) ] = (−i}){gνσ ∂µ∂ρ − gµσ ∂ν∂ρ
− gνρ ∂µ∂σ + gµρ ∂ν∂σ}D0(x)

whence
[Bx(x) , Bx(0) ] = i}

(
4− ∂ 2

x

)
D0(x)

[Bx(x) , By(0) ] = − i} ∂x∂yD0(x)

et cetera, where x = (t, x, y, z) and (Bx, By, Bz) = (F32, F13, F21) as usual.

FIELD THEORY 2.

The Lagrangian is invariant under the full Lorentz group and the discrete
charge conjugation symmetry, under the internal SU(2) Isospin transforms
on the spinor fields

Ψ(x) 7−→ Ψ ′(x) = exp
{

1
2
iσa θa

}
Ψ(x) ( a = 1, 2, 3 )
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as well as the overall phase transformation on the SU(2) spinor doublet

Ψ(x) 7−→ Ψ ′(x) = e iϕ Ψ(x)

where σa are the Pauli matrices while

0 ≤ θ < 2π 0 ≤ ϕ < 2π θ =
√
θ21 + θ22 + θ23

are the canonical coordinates of the internal symmetry group SU(2)×U(1).
The invariance under the Abelian group of the phase transformations leads
to conservation of the barion number B. Thus, if we measure the charge Q
in units of the proton charge e, then we can write the relation Q = T3 + 1

2
B

where

T3 =

∫
dx Ψ †(t,x) 1

2
σ3Ψ(t,x)

= 1
2

∫
dx [ p†(t,x) p(t,x)− n†(t,x)n(t,x) ]

B =

∫
dx [ p†(t,x) p(t,x) + n†(t,x)n(t,x) ]

Q

e
=

∫
dx p†(t,x) p(t,x)

The momentum space Feynman rules are the very same for both kinds of
Nucleons as well as the Feynman rules for the incoming and outgoing particles
and antiparticles: namely

• pion propagator: DF (k) = i [ k 2 −m2 + iε ]−1

• spinor propagator: SFαβ(p) = i(p/+M)αβ (p2 −M2 + iε)
−1

• pion-Nucleon-Nucleon vertex: − ig ( p1 + k − p2 = 0 )

• for each loop of internal line labeled by ` :
∫

d4`/(2π)4

• a factor (− 1) for each fermion loop

• incoming Nucleon: u r(p)

• outgoing Nucleon: ū r ′(p ′)

• incoming anti-Nucleon: v̄ r(p)

• outgoing anti-Nucleon: v r ′(p ′)
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The above Feynman rules give at once the lowest order O(g2) amplitude for
the π0N elastic scattering: namely,

iM rr ′(k,k ′ ) = ūr ′ (p ′ ) (− ig)S (p+ k ) (− ig)ur(p) + {k ↔ − k ′}

= − ig 2 ūr ′ (p ′ )

[
p/+ k/+M

(p+ k)2 −M2
+

p/− k/ ′ +M

(p− k ′ )2 −M2

]
ur(p)

= − ig 2 ūr ′ (p ′ )

[
k/+ 2M

(p+ k)2 −M2
− k/ ′ − 2M

(p− k ′ )2 −M2

]
ur(p)

where

p+ k − k ′ = p ′ k2 = k ′ 2 = m2 p2 = p ′ 2 = M2

whereas use has been made of the spin-states equation ( p/−M)u r(p) = 0 .
Moreover, if we select the incoming Nucleon rest frame p = 0 we find

( p+ k)2 −M2 = m2 + 2Mω ( p− k ′ )2 −M2 = m2 − 2Mω ′

where k µ = (ω,k) with ω ≈ |k| , whereas k ′µ = (ω ′,−k ′) with ω ′ ≈ |k ′| , in
such a manner that we can write

M rr ′(k,k ′ ) = ig 2 ūr ′ (p ′ )

[
k/+ 2M

2Mω +m2
+

k/ ′ − 2M

2Mω ′ −m2

]
ur(p)

≈ ig 2

2Mωω ′
ūr ′ (p ′ ) [ 2M (ω ′ − ω) + k/ω ′ + k/ ′ω )]ur(p)

for ultra-relativistic incident and scattered pions. Then we can approximate

M ∗
rr ′(k,k ′ )

≈ − ig 2

2Mωω ′
ūr (p) [ 2M (ω ′ − ω) + k/ω ′ + k/ ′ω ]ur ′(p ′ )

and if we set

Q ≡ 2M∆ω + k/ω ′ + k/ ′ω ( ∆ω ≡ ω ′ − ω )

then we can definitely write〈
|M(k,k ′ ) |2

〉
= 1

2

∑
r=1,2

∑
r ′=1,2

|M ∗
rr ′(k,k ′ ) |2

≈ g 4

8M 2ω 2ω ′ 2
tr [ (p/ ′ +M)Q (p/+M)Q ]

=
g 4

8M 2ω 2ω ′ 2
tr [ (p/+M + k/− k/ ′)Q (p/+M)Q ]

=
g 4

8M 2ω 2ω ′ 2
tr [A1 + A2 + A3 ]
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with

A1 = (p/+M)Q (p/+M)Q A2 = (k/−k/ ′)Qp/Q A3 = M(k/−k/ ′)Q2

Explicit trace calculations yields

trA1 = tr [ (p/+M)Q (p/+M)Q ]

= tr [ p/Qp/Q ] + 2M tr [Qp/Q ] +M 2 trQ2

= 16M 4∆ω 2 + tr [ p/(k/ω ′ + k/ ′ω)p/(k/ω ′ + k/ ′ω) ]

tr [ p/Qp/Q ] ≈ 16M 4∆ω 2 + 8 ( p · k )2 ω ′ 2 + 8 ( p · k ′ )2 ω 2

− 8M 2 ω ω ′ (k · k ′ ) + 16ω ω ′ ( p · k )( p · k ′ )
= 16M 4∆ω 2 + 32M 2ω 2 ω ′ 2 − 8M 2 ω ω ′ (k · k ′ )

M 2 trQ2 ≈ 16M 4∆ω 2 + 8M 2 ω ω ′( k · k ′ )
2M tr [Qp/Q ] = 8M 2 ∆ω tr [ p/(k/ω ′ + k/ ′ω) ] ≈ 64M 3 ω ω ′∆ω

Then we definitely find

trA1 ≈ 32M 2 (ω ω ′ +M ∆ω)
2

trA2 = tr [ (k/− k/ ′)Qp/Q ] = 4M 2 ∆ω 2 tr [ (k/− k/ ′) p/ ]

+ tr [ (k/− k/ ′) ( k/ ω ′ + k/ ′ ω ) p/ ( k/ ω ′ + k/ ′ ω ) ]

≈ − 16M 3 ∆ω 3 − 8Mωω ′∆ω ( k · k ′ )
trA3 = 4M 2∆ω tr [ ( k/− k/ ′ )( k/ω ′ + k/ ′ω ) ]

≈ − 16M 2∆ω 2 ( k · k ′ )

where we have taken into account the kinematics of the initial Nucleon rest
frame p = 0 that yields

p · k = Mω p · k ′ = Mω ′ k · k ′ ≈ 2ωω ′ sin 2 θ

2

Putting altogether we eventually get〈
|M(k,k ′ ) |2

〉
= 2g 4 tr [A1 + A2 + A3 ] ( 4Mωω ′ )−2

≈ 2g 4

[
2

(
1 +

M

ω
− M

ω ′

)2

−M∆ω

(
1

ω
− 1

ω ′

)2

− ∆ω

M
sin 2 θ

2
+ 2

(
2− ω

ω ′
− ω ′

ω

)
sin 2 θ

2

]
Let us close with the calculation of the incident flux factor and the final
phase space volume in the massless pion limit: in this limit one immediately
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recovers the corresponding quantities of the Compton effect, viz.

dσ = 1
4

( p · k )−1 · 1
2

∑
r,r ′=1,2

|M rr ′(k,k ′ ) |2

×
∫

dk ′

(2π)3 2ω ′

∫
dp ′

(2π)3 2E ′
(2π)4 δ(4)(k + p− k ′ − p ′ )

= ( 4Mω )−1
〈
|M(k,k ′ ) |2

〉
×

∫ ∞
0

ω ′ dω ′

(2π)3 2

∫
dΩ

2E ′(ω ′ )
(2π) δ (ω ′ + E ′(ω ′ )−M − ω)

in which
E ′(ω ′ ) ≡

√
ω ′ 2 + ω 2 − 2ωω ′ cos θ +M 2

dΩ = dφ (− d cos θ) ( 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π )

From the theory of the tempered distributions we get the well known relation∫ ∞
0

ω ′ dω ′

E ′(ω ′ )
δ (ω ′ + E ′(ω ′ )−M − ω) f(ω ′ )

=

[
ω ′ f(ω ′ )

|E ′(ω ′ ) + ω ′ − ω cos θ |

]
ω ′ = ω̃ ′

[∀ f ∈ S(R) ]

where

ω̃ ′ + E ′( ω̃ ′ ) = ω +M ⇔ ω̃ ′ ≡ ωM

M + ω (1− cos θ)

in such a manner that[
ω ′

|E ′(ω ′ ) + ω ′ − ω cos θ |

]
ω ′ = ω̃ ′

=
ω ′

M + ω (1− cos θ)
=

ω̃ ′ 2

ωM

so that we come to the differential cross-section in the Compton laboratory
frame p = 0: namely,(

dσ

dΩ

)
=

1

64π2
· ω
′

ω
· 〈 |M(k,k ′ ) |2〉
M 2 + 2Mω sin 2(θ/2)
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